skip to main content


Search for: All records

Creators/Authors contains: "Karki, Bijaya B."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The interplay between crystal–melt and grain boundary interfaces in partially melted polycrystalline aggregates controls many physical properties of mantle rocks. To understand this process at the fundamental level requires improved knowledge about the interfacial structures and energetics. Here, we report the results of first-principles molecular dynamics simulations of two grain boundaries of (0l1)/[100] type for tilt angles of 30.4° and 49.6° and the corresponding solid–liquid interfaces in Mg2SiO4forsterite at the conditions of the upper mantle. Our analysis of the simulated position time series shows that structural distortions at the solid–liquid interfacial region are stronger than intergranular interfacial distortions. The calculated formation enthalpy of the solid–solid interfaces increases nearly linearly from 1.0 to 1.4 J/m2for the 30.4° tilt and from 0.8 to 1.0 J/m2for the 49.6° tilt with pressure from 0 to 16 GPa at 1500 K, being consistent with the experimental data. The solid–liquid interfacial enthalpy takes comparable values in the range 0.9 to 1.5 J/m2over similar pressure interval. The dihedral angle of the forsterite–melt system estimated using these interfacial enthalpies takes values in the range of 67° to 146°, showing a decreasing trend with pressure. The predicted dihedral angle is found to be generally larger than the measured data for silicate systems, probably caused by compositional differences between the simulation and the measurements.

     
    more » « less
  2. Abstract The viscosity of magma plays a crucial role in the dynamics of the Earth: from the crystallization of a magma ocean during its initial stages to modern-day volcanic processes. However, the pressure-dependence behavior of viscosity at high pressure remains controversial. In this study, we report the results of first-principles molecular dynamics simulations of basaltic melt to show that the melt viscosity increases upon compression along each isotherm for the entire lower mantle after showing minima at ~6 GPa. However, elevated temperatures of the magma ocean translate to a narrow range of viscosity, i.e., 0.01–0.03 Pa.s. This low viscosity implies that the crystallization of the magma ocean could be complete within a few million years. These results also suggest that the crystallization of the magma ocean is likely to be fractional, thus supporting the hypothesis that present-day mantle heterogeneities could have been generated during the early crystallization of the primitive mantle. 
    more » « less
  3. Abstract Grain boundaries in mantle minerals are of critical importance to geophysical and geochemical processes of the Earth’s interior. One of the fundamental issues is to understand how the water (H2O) component influences the properties of grain boundaries in silicate materials. Here, we report the results of the structure and stability of several tilt grain boundaries in Mg2SiO4 forsterite over the pressure range 0 to 15 GPa using density functional theory-based first-principles simulations. The results suggest greater energetic stability and hydration-driven volume collapse (negative excess volume) at zero pressure for the majority of hydrous grain boundaries relative to the anhydrous (dry) ones. All the hydrous grain boundaries become increasingly favorable at elevated pressures as the calculated hydration enthalpy systematically decreases with increasing pressure. The hydrous components at the interfacial regions are predominantly in the hydroxyl form and, to a lesser extent, in the molecular H2O form. Their calculated ratio ranges from 1.6 to 8.7 among the different grain boundary configurations. Our structural analysis also reveals that the hydroxyls are bound to either both Mg and Si or to Mg only. In comparison, the molecular species are bound only to Mg sites. Besides direct oxygen-hydrogen bonding, intermolecular hydrogen bonding becomes important with compression. On the basis of our results, we suggest that local atomic rearrangements caused by dissociative adsorption of water facilitate efficient compaction of the boundary interfaces, which, in turn, results in greater relative stability of hydrous grain boundaries. This means that water prefers to be incorporated within the grain boundaries over the bulk of silicate materials. 
    more » « less
  4. null (Ed.)
    Diffusional isotope fractionation has been widely used to explain lithium (Li) isotope variations in minerals and rocks. Isotopic mass dependence of Li diffusion can be empirically expressed as , where is the diffusivity of a Li isotope. The knowledge about temperature and compositional dependence of the factor which is essential for understanding diffusion profiles and mechanisms remains unclear. Based on the potential energy and interatomic forces generated by deep neural networks trained with ab initio data, we performed deep potential molecular dynamics (DPMD) simulations of several Li pseudo-isotopes (with mass = 2, 7, 21, 42 g/mol) in albite, hydrous albite, and model basalt melts to evaluate the factor. Our calculated diffusivities for 7Li in albite and model basalt melts at 1800 K compare well with experimental results. We found that in albite melt decreases from at 4000 K to at 1800 K. The presence of water appears to slightly weaken the temperature dependence of , with decreasing from to in hydrous albite melt. The calculated in model basalt melt takes much smaller values, decreasing from at 4000 K to at 1800 K. Our prediction of in albite and hydrous albite melts is in good agreement with experimental data. More importantly, our results suggest that Li isotope diffusion in silicate melts is strongly dependent on melt composition. The temperature and compositional effects on can be qualitatively explained in terms of ionic porosity and the coupled relationship between Li diffusion and the mobility of the silicate melt network. Two types of diffusion experiments are suggested to test our predicted temperature and compositional dependence of . This study shows that DPMD is a promising tool to simulate the diffusion of elements and isotopes in silicate melts. 
    more » « less
  5. null (Ed.)
    Water (H2O) as one of the most abundant fluids present in Earth plays crucial role in the generation and transport of magmas in the interior. Though hydrous silicate melts have been studied extensively, the experimental data are confined to relatively low pressures and the computational results are still rare. Moreover, these studies imply large differences in the way water influences the physical properties of silicate magmas, such as density and electrical conductivity. Here, we investigate the equation of state, speciation, and transport properties of water dissolved in Mg1-xFexSiO3 and Mg2(1-x)Fe2xSiO4 melts (for x = 0 and 0.25) as well as in its bulk (pure) fluid state over the entire mantle pressure regime at 2000 to 4000 K using first-principles molecular dynamics. The simulation results allow us to constrain the partial molar volume of the water component in melts along with the molar volume of pure water. The predicted volume of silicate melt+water solution is negative at low pressures and becomes zero above 15 GPa. Consequently, the hydrous component tends to lower the melt density to similar extent over much of the mantle pressure regime irrespective of composition. Our results also show that hydrogen diffuses fast in silicate melts and enhances the melt electrical conductivity in a way that differs from electrical conduction in the bulk water. The speciation of the water component varies considerably from the bulk water structure as well. Water is dissolved in melts mostly as hydroxyls at low pressure and as -O-H-O-, -O-H-O-H- and other extended species with increasing pressure. On the other hand, the pure water behaves as a molecular fluid below 15 GPa, gradually becoming a dissociated fluid with further compression. On the basis of modeled density and conductivity results, we suggest that partial melts containing a few percent of water may be gravitationally trapped both above and below the upper mantle-transition region. Moreover, such hydrous melts can give rise to detectable electrical conductance by means of electromagnetic sounding observations. 
    more » « less
  6. null (Ed.)
    Volatiles including carbon and hydrogen are generally considered to be more soluble in silicate melts than in mantle rocks. How these melts contribute to the storage and distribution of key volatiles in Earth's interior today and during its early evolution, however, remains largely unknown. It is essential to improve our knowledge about volatiles-bearing silicate magmas over the entire mantle pressure regime. Here we investigate molten Mg FexSiO3 ( , 0.25) containing both carbon and hydrogen using first-principles molecular dynamics simulations. Our results show that the dissolution mechanism of the binary volatiles in melts varies considerably under different conditions of pressure and redox. When incorporated as CO2 and H2O components (corresponding to oxidizing conditions) almost all carbon and hydrogen form bonds with oxygen. Their speciation at low pressure consists of predominantly isolated molecular CO2, carbonates, and hydroxyls. More oxygenated species, including tetrahedrally coordinated carbons, hydrogen (O-H-O) bridges, various oxygen-joined complexes appear as melt is further compressed. When two volatiles are incorporated as hydrocarbons CH4 and C2H6 (corresponding to reducing conditions), hydroxyls are prevalent with notable presence of molecular hydrogen. Carbon-oxygen bonding is almost completely suppressed. Instead carbon is directly correlated with itself, hydrogen, and silicon. Both volatiles also show strong affinity to iron. Reduced volatile speciation thus involves polymerized complexes comprising of carbon, hydrogen, silicon, and iron, which can be mostly represented by two forms: C1−4H1−5Si0−5O0−2 (iron-free) and C5−8H1−8Si0−6Fe5−8O0−2. The calculated partial molar volumes of binary volatiles in their oxidized and reduced incorporation decrease rapidly initially with pressure and then gradually at higher pressures, thereby systematically lowering silicate melt density. Our assessment of the calculated opposite effects of the volatile components and iron on melt density indicates that melt-crystal density crossovers are possible in the present-day mantle and also could have occurred in early magma ocean environments. Melts at upper mantle and transition zone conditions likely dissolve carbon and hydrogen in a wide variety of oxidized and non-oxygenated forms. Deep-seated partial melts and magma ocean remnants at lower mantle conditions may exsolve carbon as complex reduced species possibly to the core during core-mantle differentiation while retaining a majority of hydrogen as hydroxyls-associated species. 
    more » « less
  7. null (Ed.)
    Diffusional isotope fractionation occurs in geochemical processes (such as magma mixing, bubble growth, and crystal growth), even at magmatic temperatures. Isotopic mass dependence of diffusion is commonly expressed as Di Dj ¼ mj mi   b , where Di and Dj are diffusion coefficients of two isotopes whose masses are mi and mj. How the dimensionless empirical parameter b depends on temperature, pressure, and composition remains poorly constrained. Here, we conducted a series of first-principles molecular dynamics simulations to evaluate the b factor of Mg isotopes in MgSiO3 and Mg2SiO4 melts using pseudo-isotope method. In particular, we considered interactions between Mg isotopes by simultaneously putting pseudo-mass and normalmass Mg atoms in a simulation supercell. The calculated b for Mg isotopes decreases linearly with decreasing temperature at zero pressure, from 0:158  0:004 at 4000 K to 0:121  0:017 at 2200 K for MgSiO3 melt and from 0:150  0:004 at 4000 K to 0:101  0:012 at 2200 K for Mg2SiO4 melt. Moreover, our simulations of compressed Mg2SiO4 melt along the 3000 K isotherm show that the b value decreases linearly from 0:130  0:006 at 0 GPa to 0:060  0:011 at 17 GPa. Based on our diffusivity results, the empirically established positive correlation between b and solvent-normalized diffusivity (Di/DSi) seems to be applicable only at constant temperatures or in narrow temperature ranges. Analysis of atomistic mechanisms suggests that the calculated b values are inversely correlated with force constants of Mg at a given temperature or pressure. Good agreement between our first principles results with available experimental data suggests that interactions between isotopes of major elements must be considered in calculating b for major elements in silicate melts. Also, we discuss diffusion-controlled crystal growth by considering our calculated b values. 
    more » « less
  8. Abstract

    Magma oceans were once ubiquitous in the early solar system, setting up the initial conditions for different evolutionary paths of planetary bodies. In particular, the redox conditions of magma oceans may have profound influence on the redox state of subsequently formed mantles and the overlying atmospheres. The relevant redox buffering reactions, however, remain poorly constrained. Using first-principles simulations combined with thermodynamic modeling, we show that magma oceans of Earth, Mars, and the Moon are likely characterized with a vertical gradient in oxygen fugacity with deeper magma oceans invoking more oxidizing surface conditions. This redox zonation may be the major cause for the Earth’s upper mantle being more oxidized than Mars’ and the Moon’s. These contrasting redox profiles also suggest that Earth’s early atmosphere was dominated by CO2and H2O, in contrast to those enriched in H2O and H2for Mars, and H2and CO for the Moon.

     
    more » « less
  9. Using first principles molecular dynamic simulations, we explore the effects of nitrogen (N) on the density and sound velocity of liquid iron and evaluate its potential as a light element in the Earth’s outer core. Our results suggest that Fe-N melt cannot simultaneously explain the density and seismic velocity of the Earth’s outer core. Although ~2.0 wt.% N can explain the bulk sound velocity of the outer core, such N content only lowers the density of liquid Fe by ~3%. Matching both the velocity and density by the other light elements limits the N in the core to ≪2.0 wt.%. Our finding suggests that nitrogen is a minor to trace element in the Earth’s core and is consistent with the geochemical mass balance with terrestrial abundance of N and alloy-silicate partitioning data, which suggest that there cannot be significant N in the core. 
    more » « less